Math, asked by bishnoiop029, 4 months ago

sin A
Prove that (
1- COSA
COS A
1-cos A
:)
sin A
1-sin A) – 4 CBSE2018- 4M
1-sin A
cos A​

Attachments:

Answers

Answered by TMarvel
4

Step-by-step explanation:

LHS-----

( \frac{ \sin( \alpha ) }{1 -  \cos( \alpha ) } -  \frac{1 -  \cos( \alpha ) }{ \sin( \alpha ) } )( \frac{ \cos( \alpha ) }{1 -  \sin( \alpha ) }  -  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) } ) \\  = ( \frac{ \sin( \alpha )(1  +  \cos( \alpha ) ) }{(1 -  \cos( \alpha ))(1 +  \cos( \alpha ))  } -  \frac{1 -  \cos( \alpha )  }{ \sin( \alpha ) } )( \frac{ \cos( \alpha )(1 +  \sin( \alpha ))  }{(1 -  \sin( \alpha ))(1 +  \sin( \alpha ) ) }  -  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) } ) \\   = ( \frac{ \sin( \alpha )(1  +  \cos( \alpha ) ) }{ {1}^{2} -  { \cos}^{2} \alpha    } -  \frac{1 -  \cos( \alpha )  }{ \sin( \alpha ) } )( \frac{ \cos( \alpha )(1 +  \sin( \alpha ))  }{ {1}^{2}  -  { \sin}^{2}  \alpha  }  -  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) } ) \\   =( \frac{ 1  +  \cos( \alpha )  }{  \sin( \alpha ) } -  \frac{1 -  \cos( \alpha )  }{ \sin( \alpha ) } )( \frac{ 1 +  \sin( \alpha ) }{  \sin( \alpha )   }  -  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) } ) \\   =( \frac{2 \cos( \alpha ) }{ \sin( \alpha ) } )( \frac{2 \sin( \alpha ) }{ \cos( \alpha ) } ) \\  = 2 \times 2 \\  = 4

property used in the solution ----

sin²x+cos²x=1

RHS----

4

Since LHS=RHS

hence prooved

Similar questions