Math, asked by akashreddy1480, 3 months ago

sin A
Prove that
cot A+ cosecA
sin A
= 2
cot A-coseCA​

Answers

Answered by YASHQURA
1

Step-by-step explanation:

cotA+cosecA−1

=

sinA

1+cosA

=

cotA−cosecA+1

cotA+cosecA−(cosec

2

A−cot

2

A)

[∵cosec

2

A−cot

2

A=1]

=

cotA−cosecA+1

(cotA+cosecA)−(cotA+cosecA)(cosecA−cotA)

=

cotA−cosecA+1

(cotA+cosecA)(1−cosecA+cotA)

=

sinA

cosA

=

sinA

1

=

sinA

cosA+1

=

sinA

1+cosA

=RHS

Similar questions