sin A
Prove that
cot A+ cosecA
sin A
= 2
cot A-coseCA
Answers
Answered by
1
Step-by-step explanation:
cotA+cosecA−1
=
sinA
1+cosA
=
cotA−cosecA+1
cotA+cosecA−(cosec
2
A−cot
2
A)
[∵cosec
2
A−cot
2
A=1]
=
cotA−cosecA+1
(cotA+cosecA)−(cotA+cosecA)(cosecA−cotA)
=
cotA−cosecA+1
(cotA+cosecA)(1−cosecA+cotA)
=
sinA
cosA
=
sinA
1
=
sinA
cosA+1
=
sinA
1+cosA
=RHS
Similar questions