sin
A+ Sin 3A+ Sin 5A+ Sin 7A.
Answers
Answered by
1
Answer:
=sinA+sin3A+sin5A+sin7A.
=sin16A.
Answered by
3
SinA+sin7A = 2sin[(7A+A)/2]cos[(7A-A)/2]
= 2sin4Acos3A
Similarly Sin3A+Sin5A= 2sin4AcosA
2sin4Acos3A + 2sin4AcosA = 2sin4A(cos3A+cosA) = 2Sin4A (2cos2AcosA) = 4sin4Acos2AcosA
= 2sin4Acos3A
Similarly Sin3A+Sin5A= 2sin4AcosA
2sin4Acos3A + 2sin4AcosA = 2sin4A(cos3A+cosA) = 2Sin4A (2cos2AcosA) = 4sin4Acos2AcosA
Similar questions