Math, asked by adithyachv2000, 1 month ago

(sin A+sin 3A+sin 5A+sin 7A)/ (COS A+cos3A+cos 5A+cos 7A) = tan 4A ​

Answers

Answered by adharrshv478
1

Step-by-step explanation:

L.H.S

=

cosA+cos3A+5A+cos7A

sinA+sin3A+sin5A+sin7A

We know that

sinC+sinD=2sin

2

C+D

⋅cos

2

C−D

Therefore,

=

2cos(

2

A+3A

)⋅cos(

2

A−3A

)+2cos(

2

5A+7A

)⋅cos(

2

5A−7A

)

2sin(

2

A+3A

)⋅cos(

2

A−3A

)+2sin(

2

5A+7A

)⋅cos(

2

5A−7A

)

=

2cos(2A)⋅cos(−A)+2cos(6A)⋅cos(−A)

2sin(2A)⋅cos(−A)+2sin(6A)⋅cos(−A)

=

2cos(2A)⋅cos(A)+2cos(6A)⋅cos(A)

2sin(2A)⋅cos(A)+2sin(6A)⋅cos(A)

[cos(−θ)=cosθ]

=

cos(2A)+cos(6A)

sin(2A)+sin(6A)

=

cos(2A)+cos(6A)

sin(2A)+sin(6A)

=

2cos(

2

2A+6A

)⋅cos(

2

2A−6A

)

2sin(

2

2A+6A

)⋅cos(

2

2A−6A

)

=

cos(4A)

sin(4A)

=tan4A

Hence, proved.

Similar questions