Math, asked by avanti21, 1 year ago

sin A + sin 5A + sin 9A ÷ cos A + vos 5A + cos 9A = tan 5A

Answers

Answered by parimalappaka
0

Answer:

Tan5A

Step-by-step explanation:

L.H.S

cosA+cos5A+cos9AsinA+sin5A+sin9A

We know that

sinC+sinD=2sin(2C+D)⋅cos(2C−D)

cosC+cosD=2cos(2C+D)⋅cos(2C−D)

 

Therefore,

=2cos(2A+9A)⋅cos(2A−9A)+cos5A2sin(2A+9A)⋅cos(2A−9A)+sin5A

=2cos(5A)⋅cos(4A)+cos5A2sin(5A)⋅cos(4A)+sin5A

=2cos(4A)+12cos(4A)+1(cos5Asin5A

Answered by payalchatterje
0

Answer:

Here given for prove,

 \frac{ \sin(A) +  \sin(5A)  +  \sin(9A)  }{ \cos(A)  +  \cos(5A) +  \cos(9A)  }  =  \tan(A)

Here,

L.H.S = \frac{ \sin(A) +  \sin(5A)  +  \sin(9A)  }{ \cos(A)  +  \cos(5A) +  \cos(9A)  }

and R.H.S =    \tan(A)

We know,

 \sin(C)  +  \sin(D)  = 2 \sin( \frac{C+ D}{2} )  \cos( \frac{C - D}{2} )

and

 \cos(C)  +  \cos(D)  = 2 \cos( \frac{C + D}{2} )  \cos( \frac{C - D}{2} )

Therefore,LH.S = \frac{ \sin(A) +  \sin(5A)  +  \sin(9A)  }{ \cos(A)  +  \cos(5A) +  \cos(9A)  }

 =  \frac{2 \sin( \frac{A + 9A}{2} ) \cos( \frac{A - 9A}{2} ) +sin( 5A)  }{2 \cos( \frac{A + 9A}{2} ) \cos( \frac{A - 9A}{2} ) + cos(5A) }

 =  \frac{2 \sin(5A) . \cos(4A) +  \sin(5A)  }{2 \cos(5A) . \cos(4A) +  \cos(5A)}

 =  \frac{2 \cos(4A) + 1 }{2 \cos(4A) + 1}  \times  \frac{ \sin(5A) }{ \cos(5A) }

 = \frac{ \sin(5A) }{ \cos(5A) }

 =  \tan(5A)

= R.H.S

Therefore L.H.S=R.H.S [proved]

Similar questions