Math, asked by Nishant076, 11 months ago

sin A - sin B/cos A + cos B+
cos A - cos B/sin A+ sin B=0

Answers

Answered by sanketj
3

we know that,

sin²A + cos²A = 1

RHS

= 0

LHS

 =  \frac{sinx - siny}{cosx + cosy} +  \frac{cosx - cosy}{sinx + siny}  \\  =  \frac{(sinx - siny)(sinx + siny) + (cosx - cosy)(cosx + cosy)}{(cosx + cosy)(sinx + siny)}   \\  =   \frac{ {sin}^{2}x -  {sin}^{2}y +  {cos}^{2}  x -  {cos}^{2}  y}{(cosx + cosy)(sinx + siny)}  \\  =  \frac{ {sin}^{2}x +  {cos}^{2} x -  {sin}^{2} y -  {cos}^{2}  y}{(cosx + cosy)(sinx + siny)}  \\  =  \frac{( {sin}^{2} x +  {cos}^{2}x) - ( {sin}^{2}y +  {cos}^{2}y)   }{(cosx + cosy)(sinx + siny)    }   \\  =  \frac{1 - 1}{(cosx + cosy)(sinx + siny)}  \\  =  \frac{0}{(cosx + cosy)(sinx + siny)}  \\  = 0

= RHS

Since, LHS = RHS

hence \\  \frac{sinx - siny}{cosx + cosy}  +  \frac{cosx - cosy}{sinx + siny}  = 0

... Hence Proved!

Similar questions