Math, asked by VIJJU75, 22 days ago

(sin A + sin B)/ (cos A+ cos B)= tan (A+B/2) JO PROVE KARE POINTS USKE​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

\frac{\sin(A) + \sin(B)}{\cos(A) + \cos(B)}  = \frac{2\sin( \frac{A + B}{2}) \cos(\frac{A  -  B}{2}) }{2\cos(\frac{A + B}{2}) \cos(\frac{A  -  B}{2})} \\

 \implies \: \frac{\sin(A) + \sin(B)}{\cos(A) + \cos(B)}  = \frac{\sin( \frac{A + B}{2}) }{ \cos(\frac{A + B}{2})} \\

 \implies \: \frac{\sin(A) + \sin(B)}{\cos(A) + \cos(B)}  =\tan \bigg( \frac{A + B}{2} \bigg)  \\

Similar questions