Math, asked by Arry10, 1 year ago

sin a. tana/ 1 - cos a = 1 + sec a

Answers

Answered by abhay022
1
hope it will help you !!
Attachments:

Arry10: thanku so much
abhay022: welcome brother
Arry10: I am a girl
abhay022: i just read "arya" .... ""welcome dear ""
Arry10: it's arry
abhay022: yep.. I'll remember
Answered by sushant2505
2
Hi...☺️

Here is your answer...✌️

LHS

 =  \frac{ \sin( \alpha ) \tan( \alpha )  }{1 -  \cos( \alpha ) }   \\  \\  =  \frac{ \sin( \alpha )  \times  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }{1 -  \cos( \alpha ) } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:( Since \:  \tan( \alpha )  =  \frac{ \sin( \alpha )}{ \cos( \alpha ) }) \\   = \frac{ \sin {}^{2} ( \alpha ) }{ \cos( \alpha )(1 -  \cos( \alpha ))  }  \\  \\  =  \frac{1 -  \cos {}^{2} ( \alpha ) }{ \cos( \alpha )( 1 -  \cos( \alpha )) }  \\  \\  =  \frac{(1 +  \cos( \alpha ))(1 -  \cos( \alpha ))  }{ \cos( \alpha )(1 -  \cos( \alpha ) ) }  \\  \\  =  \frac{1 +   \cos( \alpha ) }{ \cos( \alpha ) }  \\  \\  =  \frac{1}{ \cos( \alpha )   } +  \frac{ \cos( \alpha ) }{ \cos( \alpha ) }  \\  \\  =  \sec( \alpha )  + 1

= RHS [ PROVED ]
Similar questions