Math, asked by harshitapandey0235, 1 year ago

Sin(alpha) = √3/2 and cos(beta) = 0, then what will be the value of beta - alpha?

Answers

Answered by hukam0685
8

Answer:

\beta  -  \alpha  = 30° \\

Step-by-step explanation:

To find the value of

 \beta  -  \alpha  \\

Solve the given trigonometric equations

 \sin( \alpha )  =  \frac{ \sqrt{3} }{2}  \\  \\ we \: know \: that \\  \\  \sin(60°)  =  \frac{ \sqrt{3} }{2}  \\  \\ \sin( \alpha ) =  \sin(60°)  \\  \\  \alpha  = 60°...eq1 \\  \\

By the same way

 \cos( \beta )  = 0 \\  \\ we \: know \: that \\  \\  \cos(90°)  = 0 \\  \\ \cos( \beta ) =  \cos(90°)  \\  \\  \beta  = 90°...eq2 \\  \\

To find

 =  \beta  -  \alpha  \\  \\  = 90° - 60° \\  \\ \beta  -  \alpha  = 30° \\  \\

Hope it helps you.

Answered by harendrachoubay
4

The value of\beta - \alphais 30°.

Step-by-step explanation:

We have,

\sin \alpha=\dfrac{\sqrt{3} }{2} and

\cos \beta=0

To find, the value of\beta - \alpha=?

\sin \alpha=\dfrac{\sqrt{3} }{2}=\sin 60

\alpha=60°

Also,

\cos \beta=0=\cos 90

\beta=90°

\beta-\alpha=90° - 60° = 30°

Hence, the value of\beta - \alpha is 30°.

Similar questions