Math, asked by deweshkumarDR, 9 months ago

sin alpha = 3/5 and cos beta= 40/41, find value of : sin(alpha + beta) , cos(alpha -beta), tan (alpha +beta), cot(alpha-beta)​

Answers

Answered by ratipardeshi04
0

Step-by-step explanation:

Hey Mate.....

given:

 \sin( \alpha ) =  \frac{3}{5}

 \cos( \beta )  =  \frac{40}{41}

for angle alpha

p=3,h=5&b=4(by Pythagoras theorem)

for beta angle

b=40,h=41&p=9(by Pythagoras theorem)

 \sin( \alpha  +  \beta )  =  \sin( \alpha ) \cos( \beta )  +  \sin( \beta )  \cos( \alpha )

 =  \frac{3}{5}  \times  \frac{40}{41} +  \frac{9}{41}   \times  \frac{4}{5}

 =  \frac{120 + 36}{205}

 =  \frac{156}{205}

others you can do same by the formulas

 \cos( \alpha  -  \beta )  =  \cos( \alpha )  \cos( \beta )   +  \sin( \alpha  )sin( \beta )

 \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha )  \tan( \beta )  }

.......

Similar questions