Sin alpha=3/5 and sin beta=5/13 find tan(alpha+beta)
Attachments:
Answers
Answered by
7
Consider sin(α) = 3/5
sin²(α) = 9/25
We know,
sin²(θ) + cos²(θ) = 1
So,
sin²(α) + cos²(α) = 1
=> 9/25 + cos²(α) = 1
=> cos²(α) = 1 - (9/25)
=> cos²(α) = 16/25
=> cos(α) = 4/5
tan (α) = sin(α) / cos(α)
tan (α) = (3/5) / (4/5)
tan (α) = 3/4
Consider sin(β) = 5/13
sin²(β) = 25/169
sin²(β) + cos²(β) = 1
=> 25/169 + cos²(β) = 1
=> cos²(β) = 1 - (25/169)
=> cos²(β) = 144/169
=> cos(β) = 12/13
tan (β) = sin(β) / cos(β)
tan (β) = (5/13) / (12/13)
tan (β) = 5/12
Now,
tan (α + β) = [tan (α) + tan (β)] / [1 - tan (α) · tan (β)]
tan (α + β) = [(3/4) + (5/12)] / [1 - (3/4 · 5/12)]
tan (α + β) = (7/6) / (1 - (15/48))
tan (α + β) = (7/6) / (33/48)
tan (α + β) = (7/6) · (48/33)
tan (α + β) = 56/33
Answered by
0
Answer:
jjhjhv bhbbbbbbbbbhhjoovog9h9g9h9h9h
Similar questions