Math, asked by rohankeshri183, 7 months ago

(sin alpha cos beta + cos alpha sin beta ) square + (cos alpha cos beta - sin apha sin beta ) square= 1​

Answers

Answered by Anonymous
8

Question :-

Prove that :

\bf{(sin\alpha cos\beta + cos\alpha sin\beta)^{2} + (cos\alpha cos\beta - sin\alpha sin \beta)^{2} = 1}

To Find :-

To Proof that LHS = RHS.

We Know :-

  • \bf{sin(A + B) = sinAcosB + cosAsinB}

  • \bf{cos(A + B) = cosAcosB - sinAsinB}

  • \bf{sin^{2}\theta + cos^{2}\theta = 1}

Concept :-

In the Equation,

LHS = \bf{(sin\alpha cos\beta + cos\alpha sin\beta)^{2} + (cos\alpha cos\beta - sin\alpha sin \beta)^{2}}

RHS = \bf{1}

So by solving the LHS , we can get the value of LHS.

Solution :-

:\implies \bf{(sin\alpha cos\beta + cos\alpha sin\beta)^{2} + (cos\alpha cos\beta - sin\alpha sin \beta)^{2}}

Now, by Using the formula of sin(A + B) and cos(A + B) , and Substituting it in the Equation , we get :-

:\implies \bf{[sin(\alpha + \beta)]^{2} + [cos(\alpha + \beta)]^{2}}

Taking \bf{\alpha + \beta} as a single variable \bf{\gamma} ,and putting it in the Equation , we get :-

:\implies \bf{sin^{2}\gamma + cos^{2}\gamma}

Using the identity ,and substituting it in the Equation , we get :-

\bf{sin^{2}\theta + cos^{2}\theta = 1}

:\implies \bf{1}

\therefore \purple{\bf{LHS = 1}}

Hence , LHS = 1.

Now , by putting LHS and RHS together , we get :-

\bf{(sin\alpha cos\beta + cos\alpha sin\beta)^{2} + (cos\alpha cos\beta - sin\alpha sin \beta)^{2} = 1}

Putting the value of LHS in thr Equation , we get :-

\bf{1 = 1}

Hence , it is proved that LHS = RHS.

Similar questions