Math, asked by Aimo, 7 months ago

sin alpha.sin beta - cos alpha.cos beta+1=0 then prove that cot alpha.tan beta= -1​

Answers

Answered by Anonymous
4

Step-by-step explanation:

Sin\alpha*Sin\beta-Cos\alpha*Cos\beta+1=0

Cos\alpha*Cos\beta-Sin\alpha*Sin\beta=1

Cos(\alpha + \beta)=1

Cos(\alpha + \beta)=Cos0

(\alpha + \beta) = 0

\beta = -\alpha

tan\beta= -tan\alpha

\frac{tan\beta}{tan\alpha}=-1

Cot\alpha*tan\beta = -1

Similar questions