Math, asked by shivamchauhan1234567, 1 year ago

Sin alpha /sin beta=root3/2
Cos alpha/cos beta=root5/2
Find the value of 2tan square beta+ tan square alpha=?

Answers

Answered by amitnrw
2

Given  : Sinα / Sinβ  = √3 / 2 ,  Cosα / Cosβ  = √5 / 2

To Find : Value of 2 tan²β + tan²α

Solution:

Sinα / Sinβ  = √3 / 2  

=> Sinα  = √3 Sinβ / 2  

=> Sin²α  =   3 Sin²β /4

 

Cosα / Cosβ  = √5 / 2

=> Cosα = √5 Cosβ / 2

=> Cos²α  =   5 Cos²β /4

Squaring both sides and add

=> Sin²α + Cos²α  =  3 Sin²β /4 + 5 Cos²β /4

=> 1 = (3/4)(Sin²β +Cos²β) + (2/4)Cos²β

=> 1  = 3/4 + (1/2)Cos²β

=> 1/4   = (1/2)Cos²β

=> Cos²β = 1/2

=> Sin²β  = 1  -  Cos²β = 1 -1/2 = 1/2

Sin²β/Cos²β = (1/2) /(1/2)

=> tan²β = 1

Sin²α  =   3 Sin²β /4

Cos²α  =   5 Cos²β /4

=> (Sin²α/ Cos²α  ) = (3 Sin²β /4)/ (5 Cos²β /4)

=> tan²α  =  (3/5) tan²β

=> tan²α  =  3/5

2 tan²β + tan²α

= 2(1) + 3/5

= 2 + 3/5

= 13/5

= 2.6

2 tan²β + tan²α = 2.6

Learn More:

Prove that sinα + sinβ + sinγ − sin(α + β+ γ)

https://brainly.in/question/10480120

[tex]left[egin{array}{ccc}0&tan(alpha/2)\tan(alpha/2)&0 ...

https://brainly.in/question/17326856

Similar questions