Math, asked by niki5546, 1 year ago

sin alpha sin beta sin Gama are in AP and cos alpha cos beta, gamma are in GP then cos square alpha + cos square gama - 4 cos alpha cos Gama by 1 - sin alpha sin Gama is equals to​

Answers

Answered by silvershades54
4

Step-by-step explanation:

cosα+cosβ+cosγ=0=sinα+sinβ+sinγ, prove that ... (iv) (sinθ+icosθ)n=[cos(π2−θ)+isin(π2− θ)]n=cosn(π2−θ)+isinn(π2−θ); eiθ=cosθ+isin ...

hope this helps ✌️✌️✌️

Answered by Anonymous
62

\mathfrak{\huge{\green{\underline{\underline{AnswEr :}}}}}

Expand:  \frac{cos(α+γ)}{cos( \alpha  - y)} </p><p></p><p>

 \large{ \frac{cos( \alpha )cos(γ) -  \sin( \alpha )  \sin(  \gamma  ) }{ \cos( \alpha )  \cos( \gamma )  +  \sin( \alpha ) \sin( \gamma )  } }

⚘ Now by Componendo-Dividendo

 \large{ \frac{ \cos( \alpha )  \cos( \gamma ) }{ \sin( \alpha )  \sin( \gamma ) } =  \frac{1 +  \cos(2 \beta ) }{1 -  \cos( 2\beta ) }  }

⚘ We know that [Use C.D. after expanding ( {cos\:2\beta} as {cos\:(\beta)^{2}}{sin\:(\beta)^{2}} )]

 \large{ \frac{1 +  \cos( 2\beta ) }{1 -  \cos( 2\beta ) } =  \frac{1}{ \tan { (\beta })^{2}  }  }

⚘ Dividing the numerator and denominator on the LHS by {cos\:\alpha}{sin\:\gamma}

We get,

 \large{  \frac{ \cot( \gamma ) }{ \tan( \alpha ) }  =  \frac{1}{ \tan {( \beta })^{2}  } }

Similar questions