Math, asked by pradeep1878paidi, 9 months ago

sin B = 12/13 ,
then find
cotB.

Answers

Answered by michealmerwin
1

Answer:

Step-by-step explanation:

Given \: sinB = \frac{12}{13}GivensinB=

13

12

\implies \frac{1}{cosec B } = \frac{12}{13}⟹

cosecB

1

=

13

12

\implies Cosec B = \frac{13}{12} \: --(1)⟹CosecB=

12

13

−−(1)

\implies cot B = \sqrt{ cosec^{2} B - 1}⟹cotB=

cosec

2

B−1

= \sqrt{ ( \frac{13}{12})^{2} - 1}=

(

12

13

)

2

−1

= \sqrt{ ( \frac{169}{144}) - 1}=

(

144

169

)−1

= \sqrt{\frac{169-144}{144}}=

144

169−144

=\sqrt{\frac{25}{144}}=

144

25

= \sqrt{(\frac{5}{12})^{2}}=

(

12

5

)

2

\green {=\frac{5}{12}}=

12

5

Therefore.,

\red { Value \: of \: Cot B }\green {=\frac{5}{12}}ValueofCotB=

12

5

•••♪

Answered by sunainasingh074
0

Answer:

5/12

Step-by-step explanation:

sin B=12/13

means perpendicular/hypotenuse=12/13

by phthagoras theorem

therefore base=√(hypotenuse²-perpendicular²)

base=√(13²-12²)=√25=5

cot B=base/perpendicular=5/12

Similar questions