Math, asked by satyaprathima, 5 months ago

sin(b+2c) + sin(c+2a) + sin(a+2b)= 4sin(b-c/2)sin(c-a/2) cos(a-b/2) if a+b+c=π

Answers

Answered by mrunknown48
1

Answer:

Explanation:

A

+

B

+

C

=

π

A

+

B

=

π

C

.

A

+

2

B

=

(

A

+

B

)

+

B

=

(

π

C

)

+

B

=

π

(

C

B

)

.

sin

(

A

+

2

B

)

=

sin

(

π

(

C

B

)

)

=

sin

(

C

B

)

.

Similarly,

sin

(

B

+

2

C

)

=

sin

(

A

C

)

,

and

,

sin

(

C

+

2

A

)

=

sin

(

B

A

)

.

sin

(

A

+

2

B

)

+

sin

(

B

+

2

C

)

+

sin

(

C

+

2

A

)

,

=

sin

(

C

B

)

+

sin

(

A

C

)

+

sin

(

B

A

)

.

Let,

C

B

=

x

,

A

C

=

y

and

B

A

=

z

.

Then,

x

+

y

+

z

=

0

.

x

+

y

=

z

...

...

(

1

)

and

z

=

(

x

+

y

)

...

...

(

2

)

.

The L.H.S.=

sin

x

+

sin

y

+

sin

z

,

=

2

sin

(

x

+

y

2

)

cos

(

x

y

2

)

+

sin

z

,

=

2

sin

(

z

2

)

cos

(

x

y

2

)

+

sin

z

,

...

...

...

...

[

(

1

)

]

,

=

2

sin

(

z

2

)

cos

(

x

y

2

)

+

2

sin

(

z

2

)

cos

(

z

2

)

,

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

[

sin

2

a

=

2

sin

a

cos

a

]

,

=

2

sin

(

z

2

)

{

cos

(

z

2

)

cos

(

x

y

2

)

}

,

=

2

sin

(

z

2

)

{

cos

(

x

+

y

2

)

cos

(

x

y

2

)

}

,

...

...

.

[

(

2

)

]

,

=

2

sin

(

z

2

)

{

cos

(

x

+

y

2

)

cos

(

x

y

2

)

}

,

=

2

sin

(

z

2

)

{

2

sin

(

x

2

)

sin

(

y

2

)

}

,

=

4

sin

(

x

2

)

sin

(

y

2

)

sin

(

z

2

)

,

=

4

sin

(

C

B

2

)

sin

(

A

C

2

)

sin

(

B

A

2

)

,

=

4

sin

(

B

C

2

)

sin

(

C

A

2

)

sin

(

A

B

2

)

,

=

+

4

sin

(

B

C

2

)

sin

(

C

A

2

)

sin

(

A

B

2

)

,

=The R.H.S.

Enjoy Maths.!

Answered by paramsandhu4909
4

A+B+C=pi rArr A+B=pi-C.#

#:. A+2B=(A+B)+B=(pi-C)+B=pi-(C-B).#

#:. sin(A+2B)=sin(pi-(C-B))=sin(C-B).#

Similarly,

# sin(B+2C)=sin(A-C), and, sin(C+2A)=sin(B-A).#

#:. sin(A+2B)+sin(B+2C)+sin(C+2A),#

#=sin(C-B)+sin(A-C)+sin(B-A).#

Let, #C-B=x, A-C=y and B-A=z.#

Then, #x+y+z=0.#

#:. x+y=-z......(1) and z=-(x+y)......(2).#

#"The L.H.S.="sinx+siny+sinz,#

=2sin((x+y)/2)cos((x-y)/2)+sinz,

=2sin(-z/2)cos((x-y)/2)+sinz,............[because (1)],

=-2sin(z/2)cos((x-y)/2)+2sin(z/2)cos(z/2),...........................................................................[because sin2a=2sinacosa],

=2sin(z/2){cos(z/2)-cos((x-y)/2)},

=2sin(z/2){cos(-(x+y)/2)-cos((x-y)/2)},.......[because (2)],

=2sin(z/2){cos((x+y)/2)-cos((x-y)/2)},

=2sin(z/2){-2sin(x/2)sin(y/2)},

=-4sin(x/2)sin(y/2)sin(z/2),

=-4sin((C-B)/2)sin((A-C)/2)sin((B-A)/2),

=-4sin(-(B-C)/2)sin(-(C-A)/2)sin(-(A-B)/2),

=+4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2),

=The R.H.S."

Similar questions