sin(B-C)/cosB ×cosC=tanB-tanC
Answers
Answered by
1
Answer:
Left hand side = sin(B-C) / cos(B) × cos(C)
We know that
Sin( α - β ) = Sin(α)cos(β) - sin(β)cos(α)
And
Tan(Ф) = Sin(Ф) / Cos(Ф)
So
Sin( α - β ) = ( Sin(B)cos(C) - sin(C)cos(B) ) / cos(B) × cos(C)
= Sin(B)cos(C) / cos(B) × cos(C) - sin(C)cos(B) / cos(B) × cos(C)
= Sin(B) / Cos(B) - Sin(C) / Cos(C)
= Tan(B) - Tan(C) = Right hand side
Hence prove
L.H.S = R.H.S
Similar questions
Accountancy,
6 months ago
Hindi,
6 months ago
Biology,
6 months ago
Math,
1 year ago
History,
1 year ago