sinΦ=c/√c2+d2,d>0.find cosΦ&tanΦ
Answers
Answer:
cos Φ = c+d4/c , tan Φ = 1
Step-by-step explanation:
see,
sinΦ = c/c2+d2 ; sin Φ = Perpendicular/Hypotenuse
So when we both Perpendicular and Hypotenuse,
we should get the Base. For that we use p^2+h^2 = b^2
So , as per that; p^2+h^2 = b^2
: (c2)^2 + (d2)^2 = b^2 { we got the values from sinΦ}
: (c^2 x 4 ) + (d^2 x 4) = b^2 { on squaring (c2)^2 + (d2)^2 )
: c^2d^2*8 { on addding (c2)^2 + (d2)^2 }
: { underroot :(c2)^2 + (d2)^2}
: b = c+d4
so, We got the Base = c+d 4
now; cosФ = Base/Perpendicular = c+d4/c
now; tan Ф = sinФ/cosФ
⇒ (c/c2+d2)/(c+d4/c)
then cut , c with c 2 and 2 with 4
then the answer becomes c+d/c+d ⇒ 1
Hope you understand;