Biology, asked by Expert0204, 4 months ago

sin - cos + 1 /sin + cos + 1 = 1 /sec- tan​

Answers

Answered by diajain01
25

{\boxed{\underline{\tt{ \orange{Required  \:  \: Answer:-}}}}}

◒TO PROVE:-

 \tt {\frac{sin \theta \:  - \:  cos \theta + 1}{ sin \theta \:   +  \: cos \theta  -  1\: }  =  \frac{1}{sec \theta \:  -  \: tan \theta} }

◒USED:-

  •  \bf{ {sec}^{2}  \theta \:  = 1 +  {tan}^{2}  \theta \: }
  •  \bf{ {sec}^{2}  \theta \:  -  {tan}^{2} \theta  = 1}
  •  {tan}^{2} \theta \:  -  {sec}^{2} \theta =  - 1
  • (a - b)(a + b) =  {a}^{2}  -  {b}^{2}

◒SOLUTION:-

{\boxed{\underline{\mathbb{\purple{ L.H.S}}}}}

:  \longrightarrow \tt {\frac{sin \theta \:  - \:  cos \theta + 1}{ sin \theta \:   +  \: cos \theta  -  1\: } }

Dividing numerator and denominator by cosθ

:  \longrightarrow \tt{ \frac{ \frac{1}{cos \theta} (sin \theta - cos \theta + 1)}{ \frac{1}{cosθ}(sin \theta + cos \theta - 1) } }

:  \longrightarrow \tt \frac{{( \frac{sin \theta}{cos \theta} ) -  (\frac{cos \theta}{cos \theta}) + ( \frac{1}{cos \theta} ) }}{( \frac{sin \theta}{cos \theta}) +  (\frac{cos \theta}{cos \theta}  ) - ( \frac{1}{cos \theta} )}

:  \longrightarrow \tt{ \frac{tan \theta - 1 + sec \theta}{tan \theta + 1 - sec \theta}}

:  \longrightarrow \tt{ \frac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1} }

Multiplying both Numerator and Denominator by

(tanθ-secθ).

:  \longrightarrow \tt{ \frac{{(tan \theta + sec \theta - 1)(tan \theta - sec \theta)}}{ \: {(tan \theta - sec \theta + 1})(tan \theta - sec \theta) } }

 :  \longrightarrow \tt{ \frac{(tan \theta + sec \theta)(tan \theta - sec \theta) - 1 \times (tan \theta - sec \theta)}{(tan \theta - sec \theta + 1)(tan \theta - sec \theta)}}

Using (a-b) (a+b)= a^2 - b^2

Here,

a = tanθ and b = secθ

:  \longrightarrow \tt{ \frac{( {tan}^{2}  \theta -  {sec}^{2} \theta) - (tan \theta - sec \theta) }{(tan \theta - sec \theta + 1)(tan \theta - sec \theta)} }

:  \longrightarrow \tt{ \frac{( - 1) - (tan \theta - sec \theta)}{(tan \theta - sec \theta + 1)(tan \theta - sec \theta)} }

:  \longrightarrow \tt{ \frac{ - 1 - tan \theta + sec \theta}{(tan \theta - sec \theta + 1)(tan \theta - sec \theta)} }

:  \longrightarrow \tt{  \frac{- (1 + tan \theta + sec \theta)}{(tan \theta - sec \theta + 1)(tan \theta - sec \theta)} }

:  \longrightarrow \tt{ \frac{ - 1}{tan \theta - sec \theta} }

:  \longrightarrow \tt{ \frac{1}{ - (tan \theta - sec \theta)} }

:  \longrightarrow \tt{ \frac{1}{sec \theta - tan \theta} }

{\boxed{\underline{\mathbb{\purple{R .H.S}}}}}

Hence proved.

Similar questions