Math, asked by AnujPatidar1558, 1 year ago

sinθ-cosθ+1/sinθ+cosθ-1=1/secθ-tanθ Prove it?

Answers

Answered by Robin0071
1
Proved

● L.H.S => secθ+tanθ
multiply by \times \frac{secθ - tanθ}{secθ - tanθ}

 = (secθ + tanθ) \times \frac{secθ - tanθ}{secθ - tanθ} \\ = ( {sec}^{2} θ - {tan}^{2} θ) \times \frac{1}{secθ - tanθ} \\ \frac{1}{secθ - tanθ} \\ proved
L.H.S = R.H.S

■I HOPE ITS HELP■
Attachments:

sumikumar1714: gd but some slolution is left
Answered by siddhartharao77
7

Here, I am writing theta as A.


 Given : \frac{sinA - cosA + 1}{sinA + cosA - 1}


Multiply by cosA.


 = > \frac{\frac{sinA - cosA + 1}{cosA}}{\frac{sinA + cosA - 1}{cosA}}


 = > \frac{\frac{sinA}{cosA} - \frac{cosA}{cosA} + \frac{1}{cosA}}{\frac{sinA}{cosA} + \frac{cosA}{cosA} - \frac{1}{cosA}}


 = > \frac{tanA - 1 + secA}{tanA + 1 - secA}


 = > \frac{(secA + tanA) - (sec^2A - tan^2A)}{tanA + 1 - secA}


We know that a^2 - b^2 = (a + b)(a - b)


 = > \frac{(secA + tanA) - (secA + tanA)(secA - tanA)}{tanA + 1 - secA}


 = > \frac{(secA + tanA)[1 - (secA - tanA)]}{(tanA + 1 - secA)}


 \frac{(secA + tanA)(1 - secA + tanA)}{(tanA + 1 - secA)}


 = > secA + tanA


On rationalizing we get,


 = > secA + tanA * \frac{secA - tanA}{secA - tanA}


 = > \frac{(secA + tanA)(secA - tanA)}{(secA - tanA)}


 = > \frac{1}{secA - tanA}



Hope it helps!


sumikumar1714: thanks a lot
siddhartharao77: most welcome bro!..
Similar questions