Math, asked by guptabhumit9744, 1 month ago

sinθ−cosθ+1 / ​sinθ+cosθ−1 = 1/secθ−tanθ

prove that LHS=RHS
BY SOLVING RHS​

Answers

Answered by XxMrZombiexX
168

\large\underline{\underline\blue{\sf We  \: have  :  - }}

sinθ−cosθ+1 / sinθ+cosθ−1 = 1/secθ−tanθ

\large\underline{\underline\blue{\sf \: to \: find :  - }}

  • prove that LHS = RHS

\large\underline{\underline\green{\sf \: solution : -  }}

Let us deduce the expression from LHS towards RHS

Explanation:

Since we will apply the identity involving secθ and tanθ, first convert the LHS in terms of secθ and tanθ by dividing both numerator and denominator by cosθ.

thus,

 \sf \: LHS = \dfrac{  ( sinθ - cosθ +1) }{ (sinθ + cosθ -1)}

   

  \tt   =  \frac{ \bigg ( \dfrac {sinθ}{cosθ} + \dfrac{ cosθ}{cosθ} + \dfrac{1}{cosθ} \bigg) }{  \bigg( \dfrac{sinθ}{cosθ} + \dfrac{ cosθ}{cosθ }- \dfrac{1}{cosθ} \bigg)}

     

 \tt   =  \dfrac{(tanθ - 1 + secθ) }{( tanθ + 1 - secθ) }

\tt \: Since,

 \tt  \red \longmapsto\dfrac{ sinθ}{cosθ} =  tanθ  \:  \:  \: and  \:  \dfrac{1}{cosθ }= secθ

   

\tt  \red \longmapsto   \dfrac {{ \{( tanθ + secθ) -1 \} }}{ {{ \{(tanθ - secθ) +1 \} }}}

      Now multiplying both numerator and denominator by (tanθ - secθ), we get

   

\tt  \red \longmapsto     \dfrac{ {   \{( tanθ + secθ) -1} \}}{ { \{{(tanθ - secθ) +1}} \}}  

\tt  \red \longmapsto    \dfrac{\{( tanθ + secθ) -1 \} (tanθ - secθ)}{ \{(tanθ - secθ) +1 \}  (tanθ - secθ)}

\\\\ \tt\red\longmapsto \dfrac{\{(tan2θ - sec2θ) - (tanθ - secθ) \} }{ (tanθ - secθ + 1)(tanθ - secθ)}

   

 \tt\red\longmapsto     \dfrac{(-1 -  \cancel{tanθ + secθ})}{(  \cancel{tanθ - secθ +1})(tanθ - secθ)}

\tt\red\longmapsto     \dfrac{-1 }{ (tanθ - secθ)}

\tt\red\longmapsto     \dfrac{1}{  (secθ - tanθ)}

       Hence, proved LHS = RHS

Answered by Yugant1913
90

\large\underline{\underline\blue{\sf We  \: have  :  - }}

sinθ−cosθ+1 / sinθ+cosθ−1 = 1/secθ−tanθ

\large\underline{\underline\blue{\sf \: to \: find :  - }}

  • prove that LHS = RHS

 \large \underline{ \underline{  \green{ \sf \: formula \: used : -  }}}

  • sin²θ = 1 + tan²θ
  • a² + b² = (a + b)(a - b)

\large\underline{\underline\green{\sf \: solution : -  }}

we need to proved that,

 \tt \:  \dfrac{sinθ - cosθ + 1}{sinθ + cosθ - 1}  =  \dfrac{1}{secθ - tanθ}

we will use formula  \sf \red{ {sec}^{2}θ = 1 +  {tan}^{2} θ }

Now

 \sf \:  \:  \:  \: LHS  \:  \:  \: = \:  \:  \:  \dfrac{sinθ- cosθ+1}{sinθ+cosθ - 1}

Dividing numerator and denominator by cosθ , we get

 \tt \longrightarrow \:  \dfrac{ \dfrac{sinθ - cosθ + 1}{cosθ}}{ \dfrac{sinθ + cosθ - 1}{cosθ} }

Cancelling the similar terms in numerator and denominator we get,

 \tt \longrightarrow \:  \:  \dfrac{ \dfrac{sinθ - 1}{cosθ} +  \dfrac{1}{cosθ}  }{ \dfrac{sinθ + 1}{cosθ} -  \dfrac{1}{cosθ}  }

we know that  \sf \red{tanθ =  \dfrac{sinθ}{cosθ} } \:, \:  \red{secθ =  \dfrac{1}{cosθ} } \:  using these we get,

   

 \tt \longrightarrow \:  \:  \dfrac{tanθ - 1 + secθ}{tanθ + 1 - secθ}

Multiplying both numerator and denominator by tanθ - secθ

 \tt \longrightarrow \:  \:  \dfrac{(tanθ + secθ + 1)(tanθ - secθ)}{(tanθ - secθ + 1)(tanθ - secθ)}

Solving we get ,

 \tt \longrightarrow \:  \:  \dfrac{(tanθ + secθ)(tanθ - secθ) - 1(tanθ - secθ)}{(tanθ - secθ + 1)(tanθ - secθ)}

Using the algebraic formula,

 \green{ \frak{ {a}^{2} -  {b}^{2} = (a + b)(a - b)  }}

 \tt \longrightarrow \:  \:  \dfrac{ ({tan}^{2}θ -  {sec}^{2} θ + 1) - (tanθ + sec θ)}{(tanθ - secθ)(tanθ - secθ)}

Using the trigonometric formula,  \sf \red{sec ^{2} θ = 1 +  {tan}^{2} θ}

 \tt \longrightarrow \:  \:  \dfrac{  - 1 - tanθ + sec θ}{(tanθ - secθ + 1)(tan - secθ)}

Taking- 1 common from numerator, we get

 \tt\: \longrightarrow \:  \dfrac{ - \cancel{ (1tanθ - secθ)}}{ \cancel{(tanθ - secθ + 1) }{(tanθ - secθ)}}

Cancelling the same term from numerator and denominator, we get

 \tt \longrightarrow \:  \:  \dfrac{1}{tanθ - secθ}

Simplify we get,

 \tt \longrightarrow \:  \:  \dfrac{ 1 }{secθ - tanθ}

  \tt = RHS

therefore LHS = RHS

 \green{ \sf \: hence \:  \:  \:  \dfrac{sinθ - cosθ + 1}{sinθ + cosθ - 1}  =  \dfrac{1}{secθ - tanθ} }

  \qquad \qquad \qquad \qquad \huge \blue{ \underline \frak{hence \: proved}}

Similar questions