Math, asked by appu365, 9 months ago

(sinθ+cosθ)²+(sinθ-cosθ)²=​

Answers

Answered by BrainlyTornado
1

Answer:

(sinθ+cosθ)²+(sinθ-cosθ)²=2

Step-by-step explanation:

=sin^2 θ + cos^2 θ +2sinθ cosθ +sin^2 θ + cos^2 θ -2sinθ cosθ

sin^2 θ + cos^2 θ=1

=1+1

(sinθ+cosθ)²+(sinθ-cosθ)²=2

Answered by EthicalElite
33

\huge\tt{Answer:-}

 \sf (sin \theta +cos \theta )^{2} +(sin \theta -cos \theta )^{2} = 2

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

\huge\tt{Solution:-}

 \sf (sin \theta +cos \theta )^{2} +(sin \theta -cos \theta )^{2}

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \sf By \: using \: identinty \: (a+b)^{2} = a^{2} + b^{2} + 2ab \: and \: (a-b)^{2} = a^{2} + b^{2} - 2ab

 \sf : \implies (sin^{2} \theta + cos^{2} \theta + 2sin \theta cos \theta ) + (sin^{2} \theta + cos^{2} \theta - 2sin \theta cos \theta)

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \sf Now, \: we \: know \: that \: sin^{2} \theta + cos^{2} \theta = 1

 \sf : \implies (1 + 2sin \theta cos \theta) + (1 - 2sin \theta cos \theta)

 \sf : \implies 1 + 2sin \theta cos \theta + 1 - 2sin \theta cos \theta

 \sf : \implies 1 + \cancel{2sin \theta cos \theta} + 1 \:  \cancel{- 2sin \theta cos \theta }

 \sf : \implies 1 + 1

 \sf : \implies 2

 \sf \therefore (sin \theta +cos \theta )^{2} +(sin \theta -cos \theta )^{2} = 2

Similar questions