sinΦ+cosΦ=√2cosΦ prove that cotΦ=(√2+1)
Answers
Answered by
0
Answer:
sinΦ+cosΦ=√3 squaring on both side (sinΦ +cosΦ)sq.=(√3)sq. sin sq Φ+cos sq Φ +2 sinΦ.cosΦ= 3 1+ 2sinΦ.cosΦ=3 2sinΦ.cosΦ= 3-1 2sinΦ.cosΦ=2 sinΦ.cosΦ=1 _eq.1 tanΦ+cotΦ sinΦ upon cos Φ+ cosΦupon sinΦ sinΦsq.+ cos sq.Φ upon sin. cosΦ 1 by 1=1 hence proved
Similar questions