Math, asked by khupneichongsai8098, 11 months ago

Sin⁡θ + cos⁡θ = √(3 ) , then prove that tan⁡θ + cot⁡θ =1

Answers

Answered by Umachandru238
1

Answer:

Step-by-step explanation:

ur answer is in the below attatchment

if it helps u click on THANKS

Attachments:
Answered by Anonymous
16

⠀⠀⠀⠀⠀⠀ \huge{ \purple{ \bigstar{ \mathfrak{answer♡</p><p>}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \huge{ \red{ \ddot{ \smile}}}

_____________________________

 \huge{ \boxed{ \purple{ \mathfrak{given =  &gt; }}}}

 \large \: { \green{sin \theta + cos \: \theta =  \sqrt{3} }}

 \huge{ \boxed{ \red{ \mathfrak{solution =  &gt; }}}}

 \large \blue{squaring \: on \: both \: side}

 {sin}^{2} \theta +  {cos}^{2} \theta + 2sin\theta.cos\theta = 3

 \large \boxed{ \purple {{sin}^{2} \theta +  {cos}^{2} \theta = 1}}

1 + 2sin\theta.cos\theta = 3 \\  \\ 2sin\theta.cos\theta = 2 \\  \\ sin\theta.cos\theta = 1..........................(1)

So,

 \large \: tan \: \theta + cot\theta

{ \pink{ \boxed{tan\theta =  \frac{sin\theta}{cos\theta} }}} \\  \\ { \pink{ \boxed{cot\theta =  \frac{cos\theta}{sin \theta}}}}

  =  &gt; \frac{sin\theta}{cos\theta}  +  \frac{cos\theta}{sin\theta}  \\ \\  =  &gt;   \frac{ {sin}^{2}\theta +  {cos}^{2} \theta }{sin\theta.cos\theta}   \\  \\  =  &gt;  \frac{1}{sin\theta.cos\theta}  \\  \\  =  \frac{1}{1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (by \: equation \: (1) \\  \\ { \boxed{ \purple{hence \: proved \: \:  tan\theta + cot\theta = 1}}}

_____________________

hops this may help you

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \huge{ \red{ \ddot{ \smile}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \huge \blue{ \mathfrak{thanks♡</p><p>}}

Similar questions