Sin +cos = {sin cos}^2
Answers
Answered by
1
here you didn't mention , angle of any trigonometry function .
we let x is angle of all trigonometry function ,
e.g sinx +cosx ={sinx .cosx}^2
take both sides square ,
(sinx + cosx )^2 = (sinx.cosx)^4
sin^2x + cos^2x +2sinx.cosx =(sinx.cosx)^4
1 +2sinx.cosx = (sinx.cosx)^4
use formula.
sin2x =2sinx.cosx
1 + sin2x = 1/16sin^4(2x)
16 + 16sin2x =sin^4(2x)
we see in RHS. is always positive term exist .
hence, LHS is always positive
16 + 16sin2x ≥ 0
1 + sin2x ≥ 0
sin2x ≥ -1
we know, sinx always greater then -1 but less then 1
for x €R this is possible .
we let x is angle of all trigonometry function ,
e.g sinx +cosx ={sinx .cosx}^2
take both sides square ,
(sinx + cosx )^2 = (sinx.cosx)^4
sin^2x + cos^2x +2sinx.cosx =(sinx.cosx)^4
1 +2sinx.cosx = (sinx.cosx)^4
use formula.
sin2x =2sinx.cosx
1 + sin2x = 1/16sin^4(2x)
16 + 16sin2x =sin^4(2x)
we see in RHS. is always positive term exist .
hence, LHS is always positive
16 + 16sin2x ≥ 0
1 + sin2x ≥ 0
sin2x ≥ -1
we know, sinx always greater then -1 but less then 1
for x €R this is possible .
Similar questions