(sinθ+cosecθ)² + (cosθ+secθ)² = 7 + tan²θ+cot²θ,Prove it by using trigonometric identities.
Answers
Given :
(sinθ+cosecθ)² + (cosθ+secθ)² = 7 + tan²θ+cot²θ
L.H.S - (sinθ+cosecθ)² + (cosθ+secθ)²
= sin²θ+cosec²θ + 2sinθ.cosecθ + cos²θ+sec²θ + 2cosθsecθ
[ (a+b)² = a² + b² + 2ab]
= (sin²θ + cos²θ) + 2sinθ.cosecθ + 2cosθsecθ + cosec²θ + sec²θ
= 1 + 2sinθ.1/sinθ + 2cosθ . 1/cosθ + cosec²θ + sec²θ
[cosecθ = 1/sinθ , secθ = 1/cosθ]
= 1 + 2 + 2 + cosec²θ + sec²θ
= 5 + (1+ cot²θ) + (1 + tan²θ)
[ cosec²θ=1+ cot²θ , sec²θ = 1 + tan²θ]
= 5 + 1+ 1+ cot²θ + tan²θ
L.H.S = 7 + tan²θ + cot²θ = R.H.S
HOPE THIS ANSWER WILL HELP YOU..
Here I am using A instead of
theta .
LHS = ( sinA + cosecA)²
+ ( CosA + secA )²
= (Sin²A+cosec²A+2sinAcosecA)
+ (Cos²A+sec²A+2cosAsecA)
______________________
( a + b )² = a² + b² + 2ab
______________________
= Sin²A+cosec² A + 2
+ Cos²A+sec²A + 2
**********************************
Since ,
i ) sinA × cosecA = 1
ii ) cosA × secA = 1
**********************************
Rearranging the terms , we get
= ( Sin²A + cos²A ) + cosec²A
+ Sec²A + 4
= ( Sin²A + cos²A )+( 1 + cot²A )
+ ( 1 + tan²A ) + 4
*******************************
By trigonometric identities:
i ) sin²A + cos²A = 1
ii ) cosec²A = 1 + cot² A
iii ) sec²A = 1 + tan² A
***********************************
= 1 + 1 + cot²A + 1 + tan² A + 4
= 7 + tan²A + cot² A
= RHS
••••