Math, asked by TbiaSupreme, 1 year ago

(sinθ+cosecθ)² + (cosθ+secθ)² = 7 + tan²θ+cot²θ,Prove it by using trigonometric identities.

Answers

Answered by nikitasingh79
6

Given :

(sinθ+cosecθ)² + (cosθ+secθ)² = 7 + tan²θ+cot²θ

L.H.S - (sinθ+cosecθ)² + (cosθ+secθ)²

= sin²θ+cosec²θ + 2sinθ.cosecθ + cos²θ+sec²θ + 2cosθsecθ

[ (a+b)² = a² + b² + 2ab]

= (sin²θ + cos²θ) + 2sinθ.cosecθ + 2cosθsecθ + cosec²θ + sec²θ

= 1 + 2sinθ.1/sinθ + 2cosθ . 1/cosθ + cosec²θ + sec²θ

[cosecθ = 1/sinθ , secθ = 1/cosθ]

= 1 + 2 + 2 + cosec²θ + sec²θ

= 5 + (1+ cot²θ) + (1 + tan²θ)

[ cosec²θ=1+ cot²θ , sec²θ = 1 + tan²θ]

= 5 + 1+ 1+ cot²θ + tan²θ

L.H.S = 7 + tan²θ + cot²θ = R.H.S

HOPE THIS ANSWER WILL HELP YOU..

Answered by mysticd
4

Here I am using A instead of


theta .


LHS = ( sinA + cosecA)²


+ ( CosA + secA )²


= (Sin²A+cosec²A+2sinAcosecA)


+ (Cos²A+sec²A+2cosAsecA)

______________________


( a + b )² = a² + b² + 2ab

______________________


= Sin²A+cosec² A + 2


+ Cos²A+sec²A + 2


**********************************


Since ,


i ) sinA × cosecA = 1


ii ) cosA × secA = 1


**********************************


Rearranging the terms , we get


= ( Sin²A + cos²A ) + cosec²A


+ Sec²A + 4


= ( Sin²A + cos²A )+( 1 + cot²A )


+ ( 1 + tan²A ) + 4


*******************************

By trigonometric identities:


i ) sin²A + cos²A = 1


ii ) cosec²A = 1 + cot² A


iii ) sec²A = 1 + tan² A


***********************************


= 1 + 1 + cot²A + 1 + tan² A + 4


= 7 + tan²A + cot² A


= RHS


••••

Similar questions