Math, asked by prasadrao12369, 1 year ago

sin(cot inverse 1/2)=tan (cos inverse X) then the value of X ​

Answers

Answered by IamIronMan0
3

Answer:

 \sin( \cot {}^{ - 1} ( \frac{1}{2} ) )  =  \sin( \sin {}^{ - 1} ( \frac{2}{ \sqrt{ {2}^{2}  +  1} } ) )  =  \frac{2}{ \sqrt{5} }

Now

 \tan( \cos {}^{ - 1} (x) )  =  \frac{2}{ \sqrt{5} }  \\  \cos {}^{ - 1} (x)  =  \tan {}^{ - 1} ( \frac{2}{ \sqrt{5} } ) \\  \cos {}^{ - 1} (x)  =  \cos {}^{ - 1} ( \frac{ \sqrt{5} }{ \sqrt{5 +  {2}^{2} } } ) =    \cos^-( \frac{ \sqrt{5} }{3} )  \\ x =  \frac{ \sqrt{5} }{3}

Similar questions