Math, asked by mvvsr68, 2 months ago

sin cube theta plus cos cube theta by sin theta + cos theta=. (with clear explanation) ( very fast)​ I will mark you as brainliest

Answers

Answered by Anonymous
1

Answer:

sin3θ

=sin(2θ+θ)

=sin2θcosθ+cos2θsinθ

=(2sinθcosθ)cosθ+(1−2sin

2

θ)sinθ

=2sinθcos

2

θ+sinθ−2sin

3

θ

=2sinθ(1−sin

2

θ)+sinθ−2sin

3

θ

=2sinθ−2sin

3

θ+sinθ−2sin

3

θ

=3sinθ−4sin

3

θ.

From these formulas, we also have the following identities for \sin^3(\theta)sin

3

(θ) and \cos^3 (\theta)cos

3

(θ) in terms of lower powers:

\sin^3(\theta) = \frac{3 \sin (\theta) - \sin \left( 3 \theta \right) }{4},\quad \cos^3 (\theta) = \frac{\cos(3\theta) + 3 \cos (\theta)}{4}.

sin

3

(θ)=

4

3sin(θ)−sin(3θ)

,cos

3

(θ)=

4

cos(3θ)+3cos(θ)

.

To remember the cosine formula, the trick that I like to use is to read cosine as "dollar." Then, we say

"Dollar thirty is equal to four dollar thirty minus three dollar."

\begin{array} {l l l l l } \$1. 30 & = \$ 4.30 & - \$ 3 \\ 1 \cos 3 \theta & = 4 \cos ^3 \theta & - 3 \cos \theta \\ \end{array}

$1.30

1cos3θ

=$4.30

=4cos

3

θ

−$3

−3cosθ

Just leaving a mark here,

\begin{aligned} \tan x \tan(60^\circ - x) \tan (60^\circ + x) &=& \tan(3x) \\ 4\sin x \sin(60^\circ - x) \sin (60^\circ + x) &=&\sin(3x) \\ 4\cos x \cos(60^\circ - x) \cos(60^\circ + x) &=& \cos(3x) \\ \tan(3x) &=& \frac {3\tan x - \tan^3 x}{1 - 3\tan^2 x}. \end{aligned}

tanxtan(60

−x)tan(60

+x)

4sinxsin(60

−x)sin(60

+x)

4cosxcos(60

−x)cos(60

+x)

tan(3x)

=

=

=

=

tan(3x)

sin(3x)

cos(3x)

1−3tan

2

x

3tanx−tan

3

x

Prove that

\tan (6^\circ) = \tan (12^\circ) \tan(24^\circ) \tan(48^)

Similar questions