Math, asked by kg69, 5 months ago

Sin e=4/7
find sec²e + cos² e​

Answers

Answered by Anonymous
17

Answer:

Question

✽ Sin e=4/7

find sec²e + cos² e

Answer

Given,

Sin e = 4/7

Sin = p/h

So, In the triangle given p = 4 ,h= 7 and

b = ?

✽ Then, by using pythagorean theorem we will find base :

➫ b² = h² - p²

➫ b² = 7² - 4²

➫ b² = 49 - 16

➫ b = √33

✽ Now,

Sec = h / b

= 7/ √33

Cos = b / h

= √33/ 7

A/q,

Sec²e + cos²e

➔ ( 7/√33)² + (√33/7)²

➔ 49/33 + 33/49

➔ 49×33 + 33×49/1617

➔ 1617 + 1617/1617

➔ 3234/1617

➔ 2

✦ Hope it Helps you ! ✦

Answered by Anonymous
3

Answer:

Qᴜᴇsᴛɪᴏɴ

Sin e=4/7

Sin e=4/7find sec²e + cos² e

Sᴏʟᴜᴛɪᴏɴ

ɢɪɴ ,

Sɪɴ e = 4/7

Sin = p/h

In the triangle given p = 4 , h = 7 and b = ?

So, by using Pythagorean theorem we will find the value of base

= -

= 7² - 4²

= 49 - 16

b = 33

Then,

Sec = h/b = 7/33

Cos = b/h = 33/7

A/q,

sec \: {}^{2} e + cos  {}^{2} e

 =  > ( \frac{7}{ \sqrt{33} } ) {}^{2}  + (  \frac{ \sqrt{33} }{7} ) {}^{2}

 =  >  \frac{49}{33}  +  \frac{33}{49}

 =  >  \frac{1617 + 1617}{1617}

 =  >  \frac{3234}{1617}

 =  > 2

Hope it helps you!!!

Similar questions