sin go= sin o-Sin2 45X cos² 45+ Seco x coso 2
Answers
Answered by
0
Answer:
Given expression cos
2
(45
∘
+x)+(sinx−cosx)
2
=
2
1
(1+cos(90+2x))+(sinx−cosx)
2
[∵cos2x=2cos
2
x−1]
=
2
1
(1−sin2x)+(sin
2
x−2sinxcosx+cos
2
x)
=
2
1
(1−sin2x)+1−2sinxcosx
=
2
1
(1−sin2x)+1−sin2x
=
2
3
(1−sin2x)
Now, since −1≤sin2x≤1
−1≤−sin2x≤1
⇒0≤1−sin2x≤2
⇒0≤
2
3
(1−sin2x)≤3
Hence,maximum value is 3
Step-by-step explanation:
hope helps
Similar questions