Math, asked by rajeevjain28, 3 months ago

Sin inv ( cos 6pie/5)

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

 \sf \: Solve :  \:  {sin}^{ - 1} \bigg( cos\dfrac{6\pi}{5} \bigg)

\large\underline{\bf{Solution-}}

We know, that

 \boxed{ \bf \: cos(2\pi \:  - x) = cosx}

 \boxed{ \bf \:  {sin}^{ - 1} (sinx) = x \:  \: if \: x \in \:  \bigg[-\dfrac{\pi}{2}\:,  \dfrac{\pi}{2}\bigg]}

 \boxed{ \bf \:  \:  {cos} \bigg( \dfrac{\pi}{2} - x \bigg)  = sinx}

 \boxed{ \bf \:  {sin}^{ - 1} ( - x) =  -  {sin}^{ - 1} x}

Let's solve the problem now!!

Consider,

\rm :\longmapsto\:{sin}^{ - 1} \bigg( cos\dfrac{6\pi}{5} \bigg)

\:  \:  \sf \: =  \:  \: {sin}^{ - 1} \bigg( cos \bigg(2\pi \:  -  \: \dfrac{4\pi}{5} \bigg) \bigg)

\:  \:  \sf \: =  \:  \: {sin}^{ - 1} \bigg( cos\dfrac{4\pi}{5} \bigg)

\:  \:  \sf \: =  \:  \: {sin}^{ - 1} \bigg( sin \bigg(\dfrac{\pi}{2} -  \dfrac{4\pi}{5} \bigg) \bigg)

\:  \:  \sf \: =  \:  \: {sin}^{ - 1} \bigg( sin \bigg(\dfrac{5\pi \:  -  \: 8\pi}{10} \bigg) \bigg)

\:  \:  \sf \: =  \:  \: {sin}^{ - 1} \bigg( sin \bigg(\dfrac{ -  \: 3\pi}{10} \bigg) \bigg)

\:  \:  \sf \: =  \:  \: {sin}^{ - 1} \bigg( -  sin \bigg(\dfrac{\: 3\pi}{10} \bigg) \bigg)

\:  \:  \sf \: =  \:  -  \: {sin}^{ - 1} \bigg(sin \bigg(\dfrac{\: 3\pi}{10} \bigg) \bigg)

\:  \:  \sf \: =  \:  \:  -  \: \dfrac{3\pi}{10}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  {sin}^{ - 1} x &\bigg[-\dfrac{\pi}{2}\:,  \dfrac{\pi}{2}\bigg] \sf  \\ \\ \sf  {cos}^{ - 1}x  & \sf [0 \: ,  \pi] \\ \\ \sf  {tan}^{ - 1}x  & \sf \bigg( - \dfrac{\pi}{2}  , \dfrac{\pi}{2}  \bigg) \\ \\ \sf  {cot}^{ - 1}x  & \sf (0, \: \pi)\\ \\ \sf  {sec}^{ - 1}x  & \sf [0 \: ,   \: \pi] -  \{\dfrac{\pi}{2} \} \\ \\ \sf  {cosec}^{ - 1}x  & \sf \bigg[-\dfrac{\pi}{2}\:,  \dfrac{\pi}{2}\bigg] -  \{0 \} \end{array}} \\ \end{gathered}

Similar questions