sin inverse 3/5-sin inverse 8/17=cos inverse 84/85
Answers
Answered by
28
We will use following trigonometric formulas in this solution -
•sin^-1(x) - sin^-1(y) = sin^-1{x√(1-y^2) - y√(1-x^2)}---------(1)
•sin^-1(x) = cos^-1{√(1 - x^2)}---------(3)
sin^-1(3/5) - sin^-1(8/17) = cos^-1(84/85)
LHS = sin^-1(3/5) - sin^-1(8/17)
LHS = sin^-1{ 3/5 × √(1 - (8/17)^2 - 8/17 × √1 - (3/5)^2 }
=> LHS = sin^-1{ 3/5 × √(289-64)/17^2 - 8/17 × √8/17 × √(25-9)/25 }
=> LHS = sin^-1{ (3/5 × √(225/289) - 8/17 × √(16/25) }
=> LHS = sin-1 { (3/5 × 15/17) - (8/17 × 4/5) }
=> LHS = sin^-1 (45/85 - 32/85)
=> LHS = sin^-1(13/85)
LHS = cos^-1{√(1 - (13/85)^2)}
=> LHS = cos^-1{√(7225-169)/7225}
=> LHS = cos^-1(√7056/7225)
=> LHS = cos^-1{√(84×84)/(85×85)}
=> LHS = cos^1(84/85) = RHS
●●● Hope It Helps ●●●
Anonymous:
Well explained! :)
Similar questions
Social Sciences,
8 months ago
Physics,
8 months ago
India Languages,
1 year ago
Math,
1 year ago
Economy,
1 year ago