Math, asked by Tambakhevansh, 1 year ago

sin inverse [cos(sin inverse x) ]+cos inverse [sin (cos inverese x) ]

Answers

Answered by Xosmos
5

Given

sin^{-1}{cos^{}[sin^{-1}x]} + cos^{-1}{sin^{}[cos^{-1}x]}

but , sin^{-1}x + cos^{-1}x = \pi/2

so,

sin^{-1}{cos^{}[ \pi/2-cos^{-1}x]} + cos^{-1}{sin^{}[ \pi/2-sin^{-1}x]}

Apply cos(a-b) and sin(a-b) formula

{

hence,

sin^{-1}{cos^{}(\pi/2)cos^{}(cos^{-1}x) + sin^{}(\pi/2)sin^{}(cos^{-1}x)}

+

cos^{-1}{sin^{}(\pi/2)cos^{}(sin^{-1}x) - cos^{}(\pi/2)sin^{}(sin^{-1}x)

}

sin^{-1}{(sin^{}(cos^{-1}x) + cos^{-1}(cos^{}(sin^{-1})}

but , sin^{-1}(cos^{} y)= y

and, cos^{-1}(cos^{} z)=z

here we have y =cos^{-1} x and z=sin^{-1} x

so,

sin^{-1}x + cos^{-1}x

\pi/2

Hope It helps.

Cheers!!!

Similar questions