Math, asked by shamsi6036, 1 year ago

Sin inverse x + sin inverse 2x=pi upon 3

Answers

Answered by holatingomani
62

sin^-1(x)+sin^-1(2x)=π/3

sin^-1(2x)=π/3-sin^-1(x)

2x=sin(π/3-sin^-1(x))

2x=sin(π/3)cos(sin^−1(x))−cos(π/3)sin(sin^−1(x))

2x=√3/2cos(cos^−1(whole root over 1−x^2))−1/2(x)

2x+x/2=√3/2(whole root over 1-x²)

5x=√3(whole root over 1-x²)

25x²=3-3x²

28x²=3

x=√(3/28)


Answered by tardymanchester
84

Answer:

Required result  x=\sqrt{\frac{3}{28}}

Step-by-step explanation:

Given : \sin^{-1}(x)+\sin^{-1}(2x)=\frac{\pi}{3}

To find : Solve for x?

Solution :

The given expression is

\sin^{-1}(x)+\sin^{-1}(2x)=\frac{\pi}{3}

Now, we solve the expression for x,

\sin^{-1}(2x)=\frac{\pi}{3}-\sin^{-1}(x)

2x=\sin\left(\frac{\pi}{3}-\sin^{-1}(x)\right)

2x=\sin\left(\frac{\pi}{3}\right)\cos(\sin^{-1}(x))-\cos\left(\frac{\pi}{3}\right)\sin(\sin^{-1}(x))

2x=\frac{\sqrt3}{2}\cos(\cos^{-1}\sqrt{1-x^2})-\frac12(x)

2x+\frac x2=\frac{\sqrt3}{2}(\sqrt{1-x^2})

5x=\sqrt3(\sqrt{1-x^2})

(5x)^2=(\sqrt3(\sqrt{1-x^2}))^2

25x^2=3-3x^2

 28x^2=3

x=\pm\sqrt{\frac{3}{28}}

But, only positive value of x satisfy the original equation,

Therefore, x=\sqrt{\frac{3}{28}}

Similar questions