Math, asked by adityakumarchaudhary, 1 year ago

Sin inverse X + Sin inverse Y + Sin inverse Z is equal to pi by 2 then find X square + Y square + Z square + 2 x y z =?

Answers

Answered by MaheswariS
47

Answer:

x^2+y^2+z^2+2xyz=1

Step-by-step explanation:

Formula used:

1.\:sin^{-1}x+cos^{-1}x=\frac{\pi}{2}

2.\:cos\theta=\sqrt{1-sin^2\theta}

Given:

sin^{-1}x+sin^{-1}y+sin^{-1}z=\frac{\pi}{2}

sin^{-1}x+sin^{-1}y=\frac{\pi}{2}-sin^{-1}z

sin^{-1}x+sin^{-1}y=cos^{-1}z............(1)

Take

sin^{-1}x=A

sinA=x

cosA=\sqrt{1-sin^2A}=\sqrt{1-x^2}

sin^{-1}y=B

sinB=y

cosB=\sqrt{1-sin^2B}=\sqrt{1-y^2}

Now (1) becomes

A+B=cos^{-1}z

cos(A+B)=z

cosA\:cosB-sinA\:sinB=z

\sqrt{1-x^2}\:\sqrt{1-y^2}-xy=z

\sqrt{1-x^2}\:\sqrt{1-y^2}=xy+z

squaring on both sides we get

(1-x^2)(1-y^2)=(xy+z)^2

1-x^2-y^2+x^2y^2=x^2y^2+z^2+2xyz

1-x^2-y^2=z^2+2xyz

Rearranging terms we get

x^2+y^2+z^2+2xyz=1

Similar questions