sin (m+n) A+ sin(m-n)a= 2 sin ma cos na
Answers
Answer:
remember sin(ma + na)= sinmacosna+sinnacosma
and sin(ma - na)= sinmacosna-sinnacosma
Step-by-step explanation:
To Prove :-
sin(M + N) + sin(M - N) = 2sinMcosN
How To Do :-
Here they asked us to Prove 'sin(M + N) + sin(M - N) = 2sinMcosN'. So here we need to take L.H.S(Left Hand side). Here L.H.S is 'sin(M+N) + sin(M - N)'. So we can observe that they are in the form of 'sin(A+B) and sin(A-B)'. So we need to apply that formula of sin(A+B) and sin(A-B). After obtaining that we need to add them.
Formula Required :-
1) sin(A + B) = sinAcosB + cosAsinB
2) sin(A - B) = sinAcosB - cosAsinB
Solution :-
Taking L.H.S :-
= sin(M + N) + sin(M - N)
= (sinM.cosN + cosM.sinN) + (sinM.cosN - cosM.sinN)
Removing brackets :-
= sinMcosN + cosMsinN + sinMcosN - cosMsinN
Cancelling the terms :-
= sinMcosN + sinMcosN
= 2sinMcosN
= R.H.S
Hence proved that 'sin(M + N) + sin(M - N) = 2sinMcosN'.