sin raise to 8 theta minus Cos raise to 8 theta is equal to 1 - 2 cos square theta into 1 minus 2 sin square theta cos square theta
Answers
Answered by
25
Answer:
Proved
Step-by-step explanation:
sin raise to 8 theta minus Cos raise to 8 theta is equal to 1 - 2 cos square theta into 1 minus 2 sin square theta cos square theta
to be proved
Sin⁸θ - Cos⁸θ = (1 - 2Cos²θ)(1 - 2Sin²θCos²θ)
LHS
= Sin⁸θ - Cos⁸θ
a² - b² = (a + b) (a-b)
here a = Sin⁴θ & b = Cos⁴θ
= (Sin⁴θ + Cos⁴θ)(Sin⁴θ - Cos⁴θ)
= (Sin⁴θ + Cos⁴θ)(Sin²θ + Cos²θ) (Sin²θ - Cos²θ)
Sin²θ + Cos²θ = 1
= (Sin⁴θ + Cos⁴θ)(1)(1 -Cos²θ - Cos²θ)
a² + b² = (a + b)² - 2ab
a = Sin²θ & b = Cos²θ
= ((Sin²θ + Cos²θ)² - 2Sin²θCos²θ)(1 - 2Cos²θ)
= (1² - 2Sin²θCos²θ)(1 - 2Cos²θ)
= (1 - 2Cos²θ)(1 - 2Sin²θCos²θ)
= RHS
QED
Answered by
3
Step-by-step explanation:
hope you understood the answer
Attachments:
Similar questions