Math, asked by gaurang2812, 1 year ago

sin raise to power 4 theta + Cos raise to power 4 theta upon 1 minus 2 sin square theta cos square theta equals to 1​

Attachments:

Answers

Answered by kunchapunandhini
7

I think this is helpful to you

Attachments:

gaurang2812: thank you
Answered by harendrachoubay
4

\dfrac{\sin^4 \theta+\cos^4 \theta}{1-2\sin^2 \theta\cos^2 \theta}=1, proved.

Step-by-step explanation:

To prove that, \dfrac{\sin^4 \theta+\cos^4 \theta}{1-2\sin^2 \theta\cos^2 \theta}=1.

L.H.S.=\dfrac{\sin^4 \theta+\cos^4 \theta}{1-2\sin^2 \theta\cos^2 \theta}

=\dfrac{(\sin^2 \theta+\cos^2 \theta)^2-2\sin^2 \theta\cos^2 \theta}{1-2\sin^2 \theta\cos^2 \theta}

Since, (a+b)^{2}=a^{2} +b^{2} +2ab

a^{2} +b^{2}=(a+b)^{2}-2ab

=\dfrac{(1)^2-2\sin^2 \theta\cos^2 \theta}{1-2\sin^2 \theta\cos^2 \theta}

[ ∵ \sin^2 \theta+\cos^2 \theta=1]

=\dfrac{1-2\sin^2 \theta\cos^2 \theta}{1-2\sin^2 \theta\cos^2 \theta}

= 1 = R.H.S., proved.

Hence, \dfrac{\sin^4 \theta+\cos^4 \theta}{1-2\sin^2 \theta\cos^2 \theta}=1, proved.

Similar questions