Math, asked by prashanttiwari62, 3 months ago

Sin[sin^-1(x/5)+cos^-1(3/5)]=1
find x

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

 \sf \: sin\bigg( {sin}^{ - 1}\dfrac{x}{5}  + {cos}^{ - 1}  \dfrac{3}{5}   \bigg)  = 1

\large\underline{\sf{To\:Find - }}

 \sf \:\: Value \: of \: x

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf{ \:  {sin}^{ - 1} (sinx) = x}}

 \boxed{ \bf{ \:  {sin}^{ - 1} x +  {cos}^{ - 1} x = \dfrac{\pi}{2} }}

 \boxed{ \bf{ \: sin\dfrac{\pi}{2}  = 1}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \sf \: sin\bigg( {sin}^{ - 1}\dfrac{x}{5}  + {cos}^{ - 1}  \dfrac{3}{5}   \bigg)  = 1

\rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5}  + {cos}^{ - 1}  \dfrac{3}{5}     =  {sin}^{ - 1}( 1)

\rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5}  + {cos}^{ - 1}  \dfrac{3}{5}     =  {sin}^{ - 1}( sin\dfrac{\pi}{2} )

\rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5}  + {cos}^{ - 1}  \dfrac{3}{5}     =  \dfrac{\pi}{2}

\rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5}   = \dfrac{\pi}{2} -   {cos}^{ - 1}  \dfrac{3}{5}

\rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5}   =  {sin}^{ - 1}  \dfrac{3}{5}

 \:  \:  \:  \:  \:  \:  \because \:  \bf \{ \:  { \bf{ \:  {sin}^{ - 1} x  = \dfrac{\pi}{2} }  \: -  \:   {cos}^{ - 1} x} \}

\rm :\implies\:\dfrac{x}{ \cancel5}  = \dfrac{3}{ \cancel5}

\bf\implies \:x \:  =  \: 3

Additional Information :-

 \boxed{ \bf{ \:  {sec}^{ - 1} x +  {cosec}^{ - 1} x = \dfrac{\pi}{2} }}

 \boxed{ \bf{ \:  {tan}^{ - 1} x +  {cot}^{ - 1} x = \dfrac{\pi}{2} }}

 \boxed{ \bf{ \:  {cos}^{ - 1} (cox) = x}}

 \boxed{ \bf{ \:  {tan}^{ - 1} (tanx) = x}}

 \boxed{ \bf{ \:  {sin}^{ - 1} ( - x) =  -  \:  {sin}^{ - 1} x}}

 \boxed{ \bf{ \:  {cos}^{ - 1} ( - x) =\pi \:  -  \:  {cos}^{ - 1}  x}}

 \boxed{ \bf{ \:  {tan}^{ - 1} ( - x) = -  \:  {tan}^{ - 1}  x}}

Similar questions