Math, asked by sirihariharisiribig, 4 months ago

sin square 10 + sin square 80 / sec square 20 - cot square 70​

Answers

Answered by mathdude500
1

Given Question :-

\tt \:  \longrightarrow \: Evaluate \: \dfrac{ {sin}^{2}10 +  {sin}^{2} 80 }{ {sec}^{2}20 -  {cot}^{2}  70}

─━─━─━─━─━─━─━─━─━─━─━─━─

 \huge\bf \: \red{AηsωeR } 

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

(1). \:  \boxed{ \red{ \bf \: sin(90 - x) = cosx}}

(2). \:  \boxed{ \red{ \bf cot(90 - x) = tanx\bf \: }}

(3). \:  \boxed{ \red{ \bf \: {sin}^{2} x +  {cos}^{2}x = 1  }}

(4). \:  \boxed{ \red{ \bf \:  {sec}^{2} x -  {tan}^{2}x = 1 }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt \:  \longrightarrow \: \: \dfrac{ {sin}^{2}10 +  {sin}^{2} 80 }{ {sec}^{2}20 -  {cot}^{2}  70}

\tt \:  \longrightarrow \: \: \dfrac{ {sin}^{2}10 +  {sin}^{2} (90 - 10) }{ {sec}^{2}20 -  {cot}^{2}  (90 - 20)}

\tt \:  \longrightarrow \: \: \dfrac{ {sin}^{2}10 +  {cos}^{2} 10 }{ {sec}^{2}20 -  {tan}^{2}  20}

\tt \:  \longrightarrow \: 1

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions