Math, asked by gowthem2798, 1 year ago

sin square(-160)/sin square 70 + sin(180-theta)/sin theta= sec squared 20. How to prove this????​

Answers

Answered by rishu6845
33

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by FelisFelis
5

\frac{\sin^2(-160)}{\sin^270}+\frac{\sin(180-\theta)}{\sin \theta}= \sec^220 Proved.

Step-by-step explanation:

Consider the provided information.

\frac{\sin^2(-160)}{\sin^270}+\frac{\sin(180-\theta)}{\sin \theta}= \sec^220

Consider the Left hand side.

Use the property: \sin(-\theta)=\sin(\theta), \sin(180-\theta)=\sin\theta

\frac{\sin^2(-160)}{\sin^270}+\frac{\sin(180-\theta)}{\sin \theta}=\frac{\sin^2(160)}{\sin^270}+\frac{\sin(\theta)}{\sin \theta}

=\frac{\sin^2(180-20)}{\sin^2(90-20)}+1

Use the property: \sin(180-\theta)=\sin\theta, \sin(90-\theta)=\cos\theta

=\frac{\sin^2 20}{\cos^2 20}+1

=\tan^2 20+1  (∴ sec²θ-tan²θ=1)

=\sec^2 20

LHS=RHS

Hence, proved

#Learn more

Prove that sec squared theta minus 1 into cot square theta is equal to 1​

https://brainly.in/question/11977440

Similar questions