Math, asked by adhaliwal8658, 1 year ago

Sin square 28+ sin square 62 + tan square 38 - cot square 52 + 1/4 sec square 30

Answers

Answered by Dipakchandpa
25
prefer the image for the solution
Attachments:
Answered by harendrachoubay
6

\sin^2 28+\sin^2 62+\tan^2 38-\cot^2 52+\dfrac{1}{4} \sec^2 30=\dfrac{4}{3}

Step-by-step explanation:

We have,

\sin^2 28+\sin^2 62+\tan^2 38-\cot^2 52+\dfrac{1}{4} \sec^2 30

To find, \sin^2 28+\sin^2 62+\tan^2 38-\cot^2 52+\dfrac{1}{4} \sec^2 30=?

\sin^2 28+\sin^2 62+\tan^2 38-\cot^2 52+\dfrac{1}{4} \sec^2 30

=\sin^2 28+\sin^2 (90-28)+\tan^2 38-\cot^2 (90-38)+\dfrac{1}{4} \times(\dfrac{2}{\sqrt{3}})^2

[ ∵ \sec 30=\dfrac{2}{\sqrt{3}}]

=\sin^2 28+\cos^2 28+\tan^2 38-\tan^2 38+\dfrac{1}{4} \times \dfrac{4}{3} )

[ ∵ \sin (90-A)=\cos A and \cot (90-A)=\tan A]

=(\sin^2 28+\cos^2 28)+(\tan^2 38-\tan^2 38)+\dfrac{1}{4} \times \dfrac{4}{3} )

=1+0+\dfrac{1}{3}

=\dfrac{3+1}{3} =\dfrac{4}{3}

Hence, \sin^2 28+\sin^2 62+\tan^2 38-\cot^2 52+\dfrac{1}{4} \sec^2 30=\dfrac{4}{3}

Similar questions