Math, asked by sah30, 1 year ago

sin square 30 degree - 2 cos cube 60 degree +3 tan power 4 45 degree

Answers

Answered by ishitamogha21
15
hope this answer will help you.
Attachments:
Answered by pinquancaro
3

\sin^230^\circ-2\cos^360^\circ+3\tan^4 45^\circ=3

Step-by-step explanation:

Given : Expression \sin^230^\circ-2\cos^360^\circ+3\tan^4 45^\circ

To find : The value of the expression ?

Solution :

Using trigonometric values,

\sin 30^\circ=\frac{1}{2}

\cos 60^\circ=\frac{1}{2}

\tan 45^\circ=1

Substitute the value in the expression,

\sin^230^\circ-2\cos^360^\circ+3\tan^4 45^\circ=(\sin 30^\circ)^2-2(\cos 60^\circ)^3+3(\tan 45^\circ)^4

\sin^230^\circ-2\cos^360^\circ+3\tan^4 45^\circ=(\frac{1}{2})^2-2(\frac{1}{2})^3+3(1)^4

\sin^230^\circ-2\cos^360^\circ+3\tan^4 45^\circ=\frac{1}{4}-2(\frac{1}{8})+3(1)

\sin^230^\circ-2\cos^360^\circ+3\tan^4 45^\circ=\frac{1}{4}-\frac{1}{4}+3

\sin^230^\circ-2\cos^360^\circ+3\tan^4 45^\circ=3

#Learn more

If sin square 60 degree - sin square 30 degree​

https://brainly.in/question/8407090

Similar questions