Math, asked by providencenonjabulo1, 10 months ago

Sin square 300°+sin 240°.cos150° all over tan225°.sin270° Simplify without using a calculator

Answers

Answered by rishika79
2

Answer:

Step-by-step explanation:

See the attachment.....

Hope it's help you to understand...

Have a great day and thanks for asking dear ❤️❤️❤️

Attachments:
Answered by Rohith200422
5

Question:

 \frac{ {sin}^{2}300° + sin240°.cos150° }{tan225°.sin270°}

Answer:

\underline\bold{ \frac{- 3}{2}} \: is \: the \: value.

Step-by-step explanation:

 \frac{ {sin}^{2}300° + sin240°.cos150° }{tan225°.sin270°}

 =  \frac{ {sin}^{2}(360° - 60°) + sin(180° + 60°).cos(180° - 30°) }{tan(180° + 45°).  sin(180° + 90°)}

 =   \frac{ {sin}^{2}( - 60°) + sin60°. cos30°  }{ tan45°. sin90° }

 =  \frac{ { (\frac{ \sqrt{3} }{2}) }^{2} -  \frac{ \sqrt{3} }{2} \times  \frac{ \sqrt{3} }{2}    }{1 \times  1}

 =  \frac{ \frac{ - 3}{4} -  \frac{3}{4}  }{ 1}

 =  \frac{ \frac{ - 6}{4} }{ 1}

\Rightarrow\boxed{ \frac{- 3}{2} }

Identities used:

\star sin60° =  \frac{ \sqrt{3} }{2}

\star cos60° =  \frac{ \sqrt{3} }{2}

\star tan45° = 1

\star sin90° = 1

Similar questions