Math, asked by arizh97p8kfol, 1 year ago

sin square 34 degree + sin square 56 degree + 2 tan 18 degrees tan72 degree minus cos square 30 degree

Answers

Answered by AryaRathode
26
hey dear!!
here is your answer.
hope it helps u✌
Attachments:
Answered by harendrachoubay
9

The value of \sin^2 34+\sin^2 56+2\tan 18\tan 72-\cos^2 30=\dfrac{9}{4}.

Step-by-step explanation:

We have,

\sin^2 34+\sin^2 56+2\tan 18\tan 72-\cos^2 30

To find, the value of \sin^2 34+\sin^2 56+2\tan 18\tan 72-\cos^2 30=?

=\sin^2 34+\sin^2 (90-34)+2\tan 18\tan (90-18)-\cos^2 30

Using trigonometric identity,

\sin(90-A)=\cos A and \tan(90-A)=\cot A

=\sin^2 34+\cos^2 34+2\tan 18\cot 18-\cos^2 30

Using trigonometric identity,

\sin^2A+\cos^2 A=1

=1+2\tan 18\cot 18-\cos^2 30

Using trigonometric identity,

\tan A.\cot A=1

=1+2(1)-(\dfrac{\sqrt{3}}{2})^2

=3-\dfrac{3}{4}=\dfrac{12-3}{4}

=\dfrac{9}{4}

Hence, the value of \sin^2 34+\sin^2 56+2\tan 18\tan 72-\cos^2 30=\dfrac{9}{4}.

Similar questions