Math, asked by lakshyavalirama3160, 1 year ago

Sin square 45 degree +cos square 45 degree by tan square 60 degree

Answers

Answered by Samuelharshith
21

Hope this may help you Thanks

Attachments:
Answered by pinquancaro
35

\dfrac{\sin^2 45^\circ+\cos^2 45^\circ}{\tan^2 60^\circ}=\dfrac{1}{3}

Step-by-step explanation:

Given : Expression \dfrac{\sin^2 45^\circ+\cos^2 45^\circ}{\tan^2 60^\circ}

To find : Solve the expression ?

Solution :

Expression \dfrac{\sin^2 45^\circ+\cos^2 45^\circ}{\tan^2 60^\circ}

We know by trigonometric values,

\sin 45=\frac{1}{\sqrt2}, \cos 45=\frac{1}{\sqrt2} and \tan 60=\sqrt3

Substitute the values in the expression,

\dfrac{\sin^2 45^\circ+\cos^2 45^\circ}{\tan^2 60^\circ}=\dfrac{(\sin45)^2+(\cos 45)^2}{(\tan 60)^2}

\dfrac{\sin^2 45^\circ+\cos^2 45^\circ}{\tan^2 60^\circ}=\dfrac{(\frac{1}{\sqrt2})^2+(\frac{1}{\sqrt2})^2}{(\sqrt3)^2}

\dfrac{\sin^2 45^\circ+\cos^2 45^\circ}{\tan^2 60^\circ}=\dfrac{\frac{1}{2}+\frac{1}{2}}{3}

\dfrac{\sin^2 45^\circ+\cos^2 45^\circ}{\tan^2 60^\circ}=\dfrac{\frac{2}{2}}{3}

\dfrac{\sin^2 45^\circ+\cos^2 45^\circ}{\tan^2 60^\circ}=\dfrac{1}{3}

#Learn more

Sin square 30 degree sin square 45 degree sin square 60 degree sin square 90 degree

https://brainly.in/question/3780917

Similar questions