Sin square 5 +sin square 10......... Sin square 85+sin square 90 = 19/2 prove it
Answers
Answered by
2
Step-by-step explanation:
sin square 5+sin square10 +........+sin square 45 +..... +sin square85 +sin square 90
sin square 5 +sin square 10+.........+(1/√2)^2+.......+sin square (90-5)+1^2
sin square 5 +sin square 10 +......+ 1/2 +........+cos square 5 +1 (like this converting all sin terms into cos we get 9 1s and by simplifying we can get the answer)
1+1+1+1+1+1+1+1+1+1/2
9+1/2
(18+1)/2
19/2
PROVED
Answered by
0
tep-by-step explanation:
Consider the provided information.
\sin^2A\cos^2B-\cos^2A\sin^2B=\sin^2A-\sin^2B
Consider the LHS.
\sin^2A\cos^2B-\cos^2A\sin^2B
\sin^2A(1-\sin^2B)-(1-\sin^2A)\sin^2B (∴\cos^2x=1-\sin^2x)
\sin^2A-\sin^2A\sin^2B-\sin^2B+\sin^2A\sin^2B
\sin^2A-\sin^2B
Hence, proved.
Step-by-step explanation:
Similar questions