Math, asked by saurabhpaliwal, 1 year ago

sin square 60 + 2 tan 45 - cos square 30​

Answers

Answered by Ashishkumar098
11

Answer:

Step-by-step explanation:

sin²60° + 2 tan²45° - cos²30°

= ( √3 / 2 )² + 2 × 1 - ( √3 / 2 )

= 3 / 4 + 2 - 3 / 4

= 2 [ Required Answer ]

Answered by pinquancaro
5

\sin^2(60)+2\tan (45)-\cos^2 (30)=2

Step-by-step explanation:

Given : Expression \sin^2(60)+2\tan (45)-\cos^2 (30)

To find : Solve the expression ?

Solution :

\sin^2(60)+2\tan (45)-\cos^2 (30)=(\sin 60)^2+2\tan (45)-(\cos30)^2

We know trigonometric values,

\sin 60=\frac{\sqrt{3}}{2}

\cos 30=\frac{\sqrt{3}}{2}

\tan 45=1

Substitute all values,

=(\frac{\sqrt3}{2})^2+2(1)-(\frac{\sqrt3}{2})^2

=\frac{3}{4}+2-\frac{3}{4}

=2

Therefore, \sin^2(60)+2\tan (45)-\cos^2 (30)=2

#Learn more

4 sin squared 30 + 2 cos squared 60 - tan squared 45

https://brainly.in/question/9811823

Similar questions