Math, asked by Abhishekak3648, 1 year ago

Sin square 63 + sin square 27 /cos square 17+cos square 73

Answers

Answered by Anonymous
11

sin^2 63° = [cos (90-63)]^2 = cos^2 27°

cos^2 17° = [sin(90-17)]^2 = sin^2 73°

putting the values,

We get,

(cos^2 27° + sin^2 27°)/( sin^2 73° + cos^2 73°)

but,

sin^2@ + cos^2@ = 1

therefore,

= 1/1

= 1

Answered by Anonymous
7

ANSWER

 \frac{ {sin}^{2} 63 ° +  {sin}^{2} 27°}{ {cos}^{2}17° + {cos}^{2}73 °  } \\

 \boxed{\red{{sin}^{2}(90 \degree \:  -  \theta)={cos}^{2} \theta  }}

 \boxed{  \red{ {cos }^{2}(90 \degree \:  -  \theta) ={sin}^{2} \theta }}

 \frac{ sin² (90° - 63°)+ cos² 27°}{</p><p>cos(90° - 73°) + {cos }^{2}  73°} \\

\boxed{\red{{sin }^{2}   \theta  +{cos }^{2}   \theta = 1 }}

 \frac{ cos²  \: 27° + sin² \:  27°}{</p><p>{sin }^{2}  73°+ {cos} ^{2}  73°} \\

 \orange{\frac{1}{1}  =1} \\

Similar questions